Berkeley News covers Savio-supported astrophysics research

June 17, 2016

A recently-published Berkeley News article features astrophysicist Alexander Tchekhovskoy’s research on black hole jets, previously discussed in an interview with Berkeley Research Computing (BRC) Program Director Patrick Schmitz. The article incorporates both still images and video in order to illustrate the magnetic instabilities in certain jets that cause them to fall apart.

By taking into account the magnetic fields that generate these jets, Tchekhovskoy and colleague Omer Bromberg, a former Lyman Spitzer Jr. postdoctoral fellow at Princeton University, discovered that magnetic instabilities in the jet determine their fate. If the jet is not powerful enough to penetrate the surrounding gas, the jet becomes narrow or collimated, a shape prone to kinking and breaking. When this happens, the hot ionized gas funneled through the magnetic field spews into the galaxy, inflating a hot bubble of gas that generally heats up the galaxy.

Powerful jets, however, are broader and able to punch through the surrounding gas into the intergalactic medium. The determining factors are the power of the jet and how quickly the gas density drops off with distance, typically dependent on the mass and radius of the galaxy core.

The simulations were run on the Savio computer at UC Berkeley, Darter at the National Institute for Computational Sciences at the University of Tennesee, Knoxville, and Stampede, Maverick and Ranch computers at the Texas Advanced Computing Center at the University of Texas at Austin. The entire simulation took about 500 hours on 2,000 computer cores, the equivalent of 1 million hours on a standard laptop.


Read more on the UC Berkeley News site.